Bsm818.ru

БСМ 818
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Насыпная плотность тампонажного цемента

Цемент тампонажный — Портландцемент

Ответим в онлайне

Быстро сориентируем по стоимости, вариантах отгрузки и доставке

  • Бесплатный образец: Да
  • Минимальная партия: 1 тонна
  • Срок отгрузки: 3-5 дней

  • Бесплатный образец: Да
  • Минимальная партия: 1 тонна
  • Срок отгрузки: 3-5 дней

  • Минимальная партия: 1 тонна
  • Срок отгрузки: 3-5 дней

  • Минимальная партия: 1 тонна
  • Срок отгрузки: 3-5 дней

  • Минимальная партия: 1 тонна
  • Срок отгрузки: 3-5 дней

  • Минимальная партия: 1 тонна
  • Срок отгрузки: 3-5 дней

  • Минимальная партия: 1 тонна
  • Срок отгрузки: 3-5 дней

  • Минимальная партия: 1 тонна
  • Срок отгрузки: 3-5 дней

  • Минимальная партия: 1 тонна
  • Срок отгрузки: 3-5 дней

  • Минимальная партия: 1 тонна
  • Срок отгрузки: 3-5 дней

  • Минимальная партия: 1 тонна
  • Срок отгрузки: 3-5 дней

  • Минимальная партия: 1 тонна
  • Срок отгрузки: 3-5 дней

  • Минимальная партия: 1 тонна
  • Срок отгрузки: 3-5 дней

  • Минимальная партия: 1 тонна
  • Срок отгрузки: 3-5 дней

Ответим в онлайне

Быстро сориентируем по стоимости, вариантах отгрузки и доставке

Микросферы стеклянные

Микросферы стеклянные — это легкий сыпучий порошок белого цвета, состоящий из отдельных полых частиц сферической формы размером от 15 до 200 мкм, преимущественно от 15 до 125 мкм.

  • Описание
  • Технические характеристики

  • в качестве композиционных материалов различного назначения
  • в качестве облегчающей добавки к тампонажным растворам
  • в качестве теплоизоляционного наполнителя в теплоизоляционных красках
  • в качестве сенсибилизатора ВВ

  • сферическая форма
  • низкая плотность (микросферы всплывают на поверхности воды)
  • высокая механическая прочность
  • термостабильность
  • химическая инертность
  • высокая температура плавления (порядка 1100°С)

МС-А9 группа А1 ТУ 6-48-108-94, МС группа А1 ТУ 6-48-108-94

МС – микросферы стеклянные

А9 – индекс поверхностной химической обработки

МС-Н, ТУ 5951-035-00204990-2010, МС -Т, ТУ 5951-035-00204990-2010, МС-Э, ТУ 5951-035-00204990-2010

МС-Н – микросферы необработанные

МС-Т – микросферы для тампонажных растворов

МС-Э – микросферы эмульсионные.

ПОЛЫЕ СТЕКЛЯННЫЕ МИКРОСФЕРЫ ПРИМЕНЯЮТСЯ:

  • в нефтяных, газовых морских и наземных глубинных скважинах низкой плотности
  • в высокопористых грунтах, в смешанных слоях
  • в буровых растворах, тампонажных составах в качестве облегчающей добавки
  • в теплоизолирующих покрытиях и материалах, красках и шпатлевках, искусственном камне, ПВХ, пластмассах и т.д.
  • в сухих строительных смесях, сверхлегких бетонах, известковых и жидких растворах, цементах и т.д.
  • в композитных стеклопластиках, синтетических пенопластах, клеях, герметиках в качестве облегчающей добавки

Применение стеклянных микросфер на месторождениях

В буровых растворах низкой плотности:

  • стеклянные полые микросферы инертны, не загрязняют окружающую среду
  • хорошие смазывающие характеристики снижают риск заклинивания бурового инструмента
  • высокая скорость и эффективность бурения
  • равномерная плотность и несжимаемая консистенция по всей глубине скважины
  • поддержка скважинных исследований в процессе бурения без потери сигнала
  • снижение загрязнений водохранилищ

В тампонажных цементах низкой плотности:

  • мелкие частицы равномерно распределяются в цементном тесте, делая раствор более однородным
  • повышение качества цементирования
  • низкая плотность при высокой прочности цементного камня. Обеспечивают лучшие показатели по сравнению с алюмосиликатными ценосферами
  • снижение вязкости для улучшения текучести раствора
  • снижение силы трения для улучшения стабильности цемента
  • высокая прочность микросфер снижает время схватывания цементного камня

Применение стеклянных микросфер в красках

Полые стеклянные микросферы имеют небольшую площадь поверхности и низкий уровень поглощения масла, что помогает значительно уменьшить потребление других компонентов в краске.

Остеклованная поверхность микросфер обеспечивает стойкость к химической коррозии и рефлекторное воздействие к свету. Таким образом, краска успешно противостоит загрязнению, коррозии, ультрафиолету, пожелтению, царапинам и т.д. Газ внутри полых стеклянных микросфер придает сферам низкую теплопроводность, так что лакокрасочное покрытие имеет очень хороший теплоизоляционный эффект. Благодаря содержанию газа внутри, сферы имеют хорошую стойкость к сокращению в горячей и холодной воде, что позволяет повысить эластичность покрытия, значительно снижая растрескивание в результате теплового расширения и сжатия.

Читайте так же:
Песчано цементный блок характеристики

Полые стеклянные микросферы повышают текучесть и гладкость покрытия. Исходя из высокого уровня заполнения, вязкость краски не будет значительно увеличена, таким образом уменьшится использование растворителей. Это позволяет сократить выброс токсичных газов в процессе окраски и значительно уменьшить степень испарения.

Применение стеклянных микросфер в пластиках

Полые стеклянные микросферы используются не только в качестве твердой, но могут изменять механические свойства высокомолекулярного полиэтилена, улучшая его прочность и стойкость к истиранию.

Нейлон (Nylon 6) с полыми стеклянными микросферами имеет высокую прочность на растяжение, ударную прочность, твердость и другие улучшенные механические свойства. Может существенно замедлить старение материала из-за воздействия света и тепла. С увеличением содержания стеклянных микросфер температурная стойкость материала повышается. Он может использоваться в производстве подшипников, камер, мебели и мебельных аксессуаров.

Полые стеклянные микросферы добавляются в жесткий ПВХ для производства профилированных материалов, труб и пластин. Такие материалы имеют хорошую стабильность в размерности,увеличенную жесткость и термостойкость.

Добавление сфер в ABS-пластик улучшает стабильность размеров материала, уменьшает усадку, увеличивает прочность на сжатие и коэффициент упругости при изгибе, повышает эффективность покрытия краской. Может быть широко использован в производстве корпусов телевизоров, автомобильных пластиковых деталей и т.д.

Добавление сфер в эпоксидные смолы может уменьшить вязкость материала и улучшить механические свойства. Такой пластик подходит для производства композитных пенопластов для глубоководных подводных лодок, спасательных шлюпок и т.д.

Добавление в ненасыщенный полиэфир помогает уменьшить усадку и водопоглощение материалов, увеличить износостойкость, что позволяет использовать его в производстве стеклопластика и т.д.

Применение микросфер в сухих строительных смесях (шпатлевках)

По сравнению с традиционными шпатлевками, новый тип шпатлевок с добавлением полых стеклянных микросфер имеет следующие преимущества:

  • Легкое приготовление и производство- полые стеклянные микросферы хорошо смешиваются с помощью простого низкоскоростного миксера. Такой продукт имеет легкий вес и больший объем;
  • По сравнению с обычными шпатлевками, новые шпатлевки с содержанием 5% полых стеклянных микросфер, могут заменить от 10 до 20% талька, карбоната кальция, бентонита. Их объем также может быть увеличен на 15 — 25% по сравнению с обычными, и сохранить около 8% смолы;
  • Скорость абсорбции масла полыми стеклянными микросферами намного меньше, чем у талька и других наполнителей, следовательно, они имеют значительно более низкую вязкость;
  • Шпатлевки с содержанием полых стеклянных микросфер легко полируются, что экономит время и сокращает трудозатраты и выброс пыли.

Применение микросфер в искусственном мраморе

Продукты, наполненные полыми стеклянными микросферами, имеют следующие преимущества:

  • увеличенная термостойкость
  • уменьшенный на 20-35% вес
  • легкая обработка (сверление, распиловка, шлифовка)
  • легкая полировка, высокое качество отделки поверхности, низкий износ инструмента
  • снижение расходов на упаковку и транспортировку
  • стойкость к усадке, деформации, растрескиванию и поломке
  • уменьшенное потребление катализатора
  • более низкая стоимость

Применение микросфер в пенопласте

Композиционный материал с полыми стеклянными микросферами и смолами — синтетическая пенопанель. Его основным свойством является низкая плотность. Высокие механические характеристики позволяют изготовить широкий набор многофункциональных композиционных материалов для гашения вибраций, изоляции, противопожарной защиты. Сейчас такие материалы в основном используются в производстве самолетов, космических аппаратов, строительстве кораблей т.д. Синтетические пены с добавлением полых стеклянных микросфер имеют пористую структуру, придают основным материалам такие свойства как низкий уровень поглощения влаги и высокую прочность на сжатие благодаря их закрытой ячеистой структуре.

Читайте так же:
Цемент м 400 литров

Микросферы вырабатывают из натриевоборосиликатного стекла следующего состава:

Na2OSiO2B2OAl2O3 + Fe2O3
25.5 –28.2 %71.7-73.8 %3.8-4.4%не более 0,4%
Наименование показателяМСМС-А9
Гр. А1Гр. А2Гр. Б1Гр. Б2Гр. А1Гр. А2Гр. Б1Гр. Б2
1. Истинная плотность, г/см3 1.1. Насыпная масса, г/см30,24-0,32 0,16-0,200,26-0,32 0,18-0,220,33-0,40 0,20-0,240,31-0,36 0,18-0,220,24-0,32 0,16-0,200,26-0,32 0,18-0,220,33-0,40 0,20-0,240,31-0,36 0,18-0,22
2. Прочность на гидростатическое сжатие (50% уровень разрушения) кг/см2, не менее6011010015080140120180
3.Коэффициент заполнения обьема, %, не менее5560556055605560
4. Влажность, массовая доля, % не более0,80,50,80,50,80,50,80,5
5. Плавучесть, объемная доля, % не менее9595959595959595
6. Массовая доля аппрета, %0,1-0,50,2-0,50,1-0,50,2-0,5

В качестве облегчающей добавки к тампонажным растворам и в качестве композиционных материалов различного назначения возможно применение микросфер стеклянных полых со следующими характеристиками:

Определение сыпучести

Сыпучесть определяется как время, в течение которого определенная масса вещества проходит (протекает) через отверстие определенного размера.

Оборудование

В зависимости от сыпучести испытуемых материалов используют воронки различных конструкций:

– без выходного ствола (типа «бункер», рис. 1), с различными размерами внутреннего угла и диаметрами выходных отверстий;

– с выходным стволом (рис. 2).

Воронка поддерживается в вертикальном положении при помощи специального устройства.

Вся конструкция должна быть защищена от вибраций.

Методика

В сухую воронку с закрытым выходным отверстием помещают без уплотнения навеску испытуемого материала, взятую с точностью ±0,5 %. Количество испытуемого материала зависит от его насыпного объема и от используемого оборудования, но должно занимать не менее 80-90 % от объема воронки.

Открывают выходное отверстие воронки и определяют время, за которое через отверстие пройдет весь образец. Проводят не менее 3 определений.

Если при использовании оборудования, представленного на рис. 1, скорость высыпания 100 г порошка через насадку 1 менее 25 с, рекомендуется использовать воронку, представленную на рис. 2.

Если при использовании оборудования, представленного на рис. 1, навеска испытуемого материала неравномерно высыпается из воронки с насадкой 1, последовательно определяют сыпучесть, используя воронку с насадкой 2 или 3.

Рис. 1 – Воронка без выходного ствола (бункер) со сменной насадкой

Насадку изготавливают из нержавеющей кислотоупорной стали (V4A, CrNi). Размеры указаны в мм

Рис. 2 – Воронка с выходным стволом

Размеры указаны в мм

В табл. 1 представлены типовые размеры диаметров выходных отверстий сменных насадок.

Таблица 1 – Типовые размеры диаметров выходных отверстий сменных насадок

НасадкаДиаметр (d) выходного отверстия, мм
110 ± 0,01
215 ± 0,01
325 ± 0,01

Представление результатов

Сыпучесть выражают в секундах с точностью до 0,1 с, отнесенных к 100 г образца, с указанием типа использованного оборудования, номера насадки.

На результаты могут влиять условия хранения испытуемого материала.

Результаты могут быть представлены следующим образом:

а) как вычисленное среднее значение сыпучести при условии, что ни один из результатов не отклоняется от среднего значения более чем на 10 %;

б) в виде диапазона значений, если отдельные результаты отклоняются от среднего значения более чем на 10 %;

в) в виде графика зависимости массы испытуемого порошка от времени истечения.

Читайте так же:
Песчано цементный раствор м 150 сертификат

Определение угла естественного откоса

Угол естественного откоса – это постоянный, трехмерный угол (относительно горизонтальной поверхности), сформированный конусообразной пирамидкой материала, полученной в определенных условиях эксперимента.

Методика

Определение угла откоса проводят по методике определения сыпучести с использованием того же оборудования в тех же условиях.

Истечение порошка из отверстия воронки производят на ровную горизонтальную поверхность. Диаметр основания (базы) конуса порошка может быть фиксированным или может меняться в процессе образования конуса.

Измерение значения угла естественного откоса проводят не менее чем в 3 повторностях при помощи угломера в 3 плоскостях и выражают в угловых градусах.

При проведении испытания следует учитывать, что:

– условия эксперимента должны обеспечивать формирование симметричного конуса порошка;

– вершина формирующегося конуса может деформироваться под воздействием падающих частиц порошка.

Эти внешние воздействия должны быть устранены любым приемлемым способом.

Кроме того, материал основы (базы), на которой формируется конус, может влиять на величину угла откоса.

В табл. 2 представлено примерное соотношение степени сыпучести порошков и угла естественного откоса, измеренного в условиях фиксированного диаметра основания конуса.

Таблица 2 – Степень сыпучести порошков и соответствующий угол естественного откоса

Степень сыпучестиУгол естественного откоса, градус
Очень хорошая25 – 30
Хорошая31 – 35
Удовлетворительная36 – 45
Неудовлетворительная (требуется дополнительное перемешивание или вибрация)46 – 55
Плохая56–65
Очень плохаяболее 66

Представление результатов

Угол естественного откоса выражают в градусах, как вычисленное среднее значение, с указанием типа использованного оборудования, номера насадки, условий эксперимента (диаметр основания конуса, если он фиксированный, материала основы (базы), на которой формируется конус).

Определение насыпного объема

Испытание позволяет определить при заданных условиях насыпные объемы до и после уплотнения, способность к уплотнению, а также насыпную плотность отдельных материалов (например, порошков, гранул).

Оборудование

Прибор (рис. 3) состоит из следующих частей:

– встряхивающее устройство, обеспечивающее 250 ± 15 соскоков цилиндра в 1 мин с высоты 3 ± 0,2 мм;

– подставка для градуированного цилиндра, снабженная держателем, имеющая массу 450 ± 5 г;

– градуированный цилиндр вместимостью 250 мл (цена деления – 2 мл; масса цилиндра 220 ± 40 г).

Допускается использование других приборов подобного принципа действия.

Методика. В сухой цилиндр помещают без уплотнения навеску испытуемого материала, имеющего насыпной объем в диапазоне от 50 до 250 мл. Аккуратно закрепляют цилиндр на подставке и фиксируют насыпной объем до уплотнения (V) с точностью до ближайшего деления. Производят 10, 500 и 1250 соскоков цилиндра и фиксируют объемы V10, V500, V1250 с точностью до ближайшего деления. Если разность между V500 и V1250 превышает 2 мл, производят еще 1250 соскоков цилиндра.

Рис. 3 – Прибор для определения насыпного объема

Представление результатов. По полученным результатам можно вычислить следующие параметры:

  1. Насыпной объем:
  1. Способность порошка к уплотнению:
  1. Насыпная плотность:

Полученные результаты можно использовать для вычисления коэффициента прессуемости по формуле:

где V – начальный объем порошка;

V1 – объем порошка после уплотнения.

Тампонирование нефтяных скважин

Первая в мире нефтяная скважина появилась в Российской империи в 1846 году. Теперь район, где она была пробурена, находится на территории Азербайджана. Скважина была геологоразведочной. А вот первую нефть из промышленной скважины получили американцы.

Это произошло, по разным данным, то ли в 1857, то ли в 1859 году.

Первые полвека своего существования нефтедобывающая промышленность обходилась без тампонирования скважин. Но примерно в 1907-1908 годах произошла первая удачная попытка уплотнения обсадной колонны цементным раствором с целью защиты нефтяных слоёв от проникновения воды.

Тампонажный цемент

На заре промышленной нефтедобычи для задач тампонирования применяли самый обыкновенный портландцемент — точно такой же, как и для строительства. Однако по мере развития нефтедобывающей отрасли требования к тампонажным материалам стали более строгими.

Первые нефтяные скважины были неглубокими, а производимый в те времена цемент имел относительно грубый помол, примерно 1200–1300 см2/г.

Уже тогда проявились первые недостатки этого материала для тампонирования скважин. Дело в том, что на малых глубинах в условиях небольших давлений и температур цементный раствор слишком медленно схватывался. Это приводило к задержке пуска скважины в эксплуатацию, так как приходилось долго ждать затвердевания цемента, чтобы он стал достаточно прочным.

Тогда нефтедобывающие компании потребовали от производителей портландцемента, чтобы для них делали более мелкий помол этого материала. Нефтяники были готовы платить больше за дополнительный помол, чтобы получать для своих нужд цемент надлежащего качества, обладающий улучшенными техническими характеристиками.

Со временем и такие свойства перестали удовлетворять требованиям нефтедобывающих компаний. Скважины стали бурить на большую глубину, где давление и температура значительно выше, чем в неглубоких скважинах. В этих условиях быстросхватывающийся портландцемент не подойдёт, ведь он застывает ещё до того, как достигнет нужной глубины.

Из-за этого пришлось снова вернуться к цементам грубого помола. Более того, в состав стали вводить добавки, замедляющие его застывание. Первой стали использовать замедлители американцы. При помоле цемента добавляли гипс, а во время тампонирования — смесь борной кислоты и гуммиарабика. Позже для нужд нефтяников стали использовать и другие виды замедлителей. На данный момент максимальная глубина, на которой целесообразно использование цементов замедленного схватывания, составляет 4,8 километра.

Чаще всего тампонажные цементные растворы заливают между стенками скважины и обсадной трубой. Эта мера:

  • препятствует попаданию воды в нефтеносный слой;
  • предотвращает выбросы нефти и газа;
  • защищает материал обсадки от агрессивного воздействия внешней среды;
  • укрепляет обсадную трубу, снижая нагрузку на неё;
  • позволяет заполнять трещины, поры и каверны в породе.

Кроме этого, тампонажный раствор можно заливать в скважину для уменьшения её глубины или для консервации. С его помощью можно также ликвидировать дефекты обсадной трубы.

Как происходит тампонирование скважин

Выбор тампонирующего раствора зависит от типа породы и других факторов. Например, если проникающий слой находится на небольшой глубине, не более полукилометра, состав для тампонирования проталкивают до нужной отметки с помощью бурового раствора. Если в породе есть крупные трещины, применяют вязкопластичный тампонажный состав. Он может включать в себя цемент, полимерные компоненты, составы на глины.

В цемент могут добавлять материалы, способствующие быстрому схватыванию, к примеру, хлористый кальций. Для изолирования пористых поверхностей применяют смолы, а для поглощающих карстовых полостей — глинолатексные составы. Использование смол для поверхностей, покрытых мелкими порами, очень эффективно, так как этот материал обладает большей проникающей способностью, чем цементные растворы.

Обычно закачивают тампонирующий состав через бурильную колонну на высоту участка, который следует изолировать. Тампонирование можно выполнять от забоя скважины или сверху. В последнем варианте его производят в один или несколько этапов.

Хотя одноэтапное заполнение делать проще, в некоторых случаях применение этого метода невозможно. Например, для такого способа нужно, чтобы расположение трещин было относительно равномерным. Многоэтапное тампонирование может проходить как с более глубоких горизонтов вверх, так и наоборот.

Если диаметр скважины невелик, зачастую используют пакер, с помощью которого производят изоляцию отдельных пластов.

Существует также циркуляционный метод. Он заключается в закачке избыточного количества тампонирующего раствора. Лишний материал по межтрубному пространству поднимается вверх. Хотя эта методика считается технически сложной, при её использовании не происходит закупорки трещин и других полостей.

Самые распространённые способы тампонирования нефтяных скважин

Рассмотрим подробнее наиболее распространённые способы тампонирования нефтяных скважин.

Для устранения негерметичности обсадной колонны и пространства за ней через фильтр скважины или дефект в колонне происходит закачка тампонажного раствора. Это самый распространённый вариант тампонирования скважин. Он может производиться тремя способами: с разбуриванием стакана; с вымыванием излишков; комбинированным методом.

В первом случае насосно-компрессорные трубы (НКТ) опускают в скважину таким образом, чтобы они оказались на 5–10 метров выше верхней границы отверстий фильтра или дефекта обсадной колонны. В них закачивают тампонажный раствор. Его излишки вымываются, а получившийся после его застывания в скважине стакан разбуривают.

Разбуривание затвердевшего цемента в колонне не всегда целесообразно. Чтобы обойтись без этого, производят вымывание тампонажного раствора, используя при этом противодавление на пласт. Очень важно, чтобы процесс закончился до того, как раствор затвердеет. Чаще всего данный метод используется, когда для тампонирования применяют нефтецементные растворы.

В некоторых случаях оба этих метода применяются в комплексе.
Этот способ называют комбинированным.

Ликвидационное тампонирование

Тампонирование производят не только для устранения дефектов поверхности и обсадной колонны, но и для ликвидации скважин. Это происходит в двух случаях. Скважина может быть пробурена для временных целей. Например, она является поисковой или разведочной. Кроме того, бывает, что эксплуатацию скважины прекращают. В этом случае её консервируют во избежание загрязнения с поверхности водоносных и нефтеносных горизонтов.

Чаще всего геологоразведочные скважины заполняют тампонажными составами после прекращения их использования.

Обычно для этого используют цементные мосты. При подборе состава тампонажных смесей в первую очередь учитывают степень агрессивности компонентов, входящих в состав подземных вод. Для тампонирования используют цемент, песок, глину, отходы бурения, ускорители застывания, различные добавки и другие компоненты.

Для агрессивных магнезиальных вод, температура которых не превышает 100 градусов по Цельсию, используют шлакопортландцемент.

Если температура подземных вод, имеющих нейтральный состав, превышает 100 градусов, то тампонирование производят портландцементом с добавлением кварцевого песка, который играет роль активной добавки.

Тампонирование нефтяной скважины, где присутствует сероводородная агрессивная среда, а температура достигает 250 градусов, проходит с использованием шлакопесчаного цемента.

Если подземные воды содержат агрессивные сульфатные компоненты, то используют портландцемент, обладающий повышенной сульфатостойкостью. Кроме того, в него добавляется ускоритель схватывания.

Если в скважине присутствуют соленосные отложения, её тампонируют цементом, основой которого является каустический магнезитовый порошок.

При консервации скважины, пробуренной на небольшую глубину и не имеющей значительного водопритока, используют просушенные шарики из глины с добавлением песка.

Один из самых сложных случаев — скважина с большим водопритоком, самоизливающийся поток которой может достигать полутораметровой высоты. Для её ликвидационного тампонирования потребуется целый комплекс мер, куда входит установка цементных мостов с гидроизолирующей перемычкой из глинистых шариков, а также применение различных наполнителей.

Правильный выбор тампонирующих составов и технологии проведения работ позволяют надёжно законсервировать скважину и избежать загрязнений подземных горизонтов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector