Bsm818.ru

БСМ 818
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сопротивление теплопередачи красного кирпича

Постройка дома сложный и длительный процесс и правильный выбор проекта залог успешного его завершения в намеченный срок и бюджет. Наш онлайн магазин проектов домов старается максимально подробно рассказать о нашем продукте и помочь вам сделать правильный выбор. Нам очень важно, чтобы вы точно знали, в каком виде, составе и объеме вы покупаете проектную документацию.

На странице проекта представлены изображения дома с различных точек и ортогональные проекции фасадов.

Для чего нужен расчет

Чтобы сэкономить на отоплении и способствовать созданию здорового микроклимата в помещении, нужно правильно рассчитать толщину стен и утеплительных материалов, которые будем использовать при строительстве. По закону физики, когда на улице холодно, а в помещении тепло, то через стену и кровлю тепловая энергия выходит наружу.

Если неправильно рассчитать толщину стен, сделать их слишком тонкими и не утеплить, это приведет к негативным последствиям:

  • зимой стены будут промерзать;
  • на обогрев помещения будут затрачиваться значительные средства;
  • сместиться точка росы, что приведет к образованию конденсата и влажности в помещении, заведется плесень;
  • летом в доме будет так же жарко, как и под палящим солнцем.

Чтобы избежать этих неприятностей, нужно перед началом строительства просчитать показатели теплопроводности материала и определиться, какой толщины возводить стену, и каким теплосберегающим материалом ее утеплять.

Что такое теплопроводность окна и от чего она зависит?

Если максимально упростить, то теплопроводность окон ПВХ – способность профильной конструкции с закрытыми створками удержать внутри помещения определенное количество энергии. Однако такого определения недостаточно, что понять суть процесса. Ведь через те же стеклопакеты утечка тепла происходит разными способами:

  • 30% потерь энергии происходит за счет конвекции внутри стеклопакетов и воздушных камер и теплопередачи через твердые компоненты оконных или дверных блоков;
  • 70% тепла уходит за пределы помещения вместе и инфракрасными волнами.

Этот простой анализ позволяет понять, как можно существенно уменьшить утечку энергии. Поскольку инфракрасные волны проходят через стекла, именно этим зонам оконных и дверных блоков требуется уделить двойное внимание. Ведь стеклопакеты занимают самую большую площадь в оконных проемах и через них уходит максимальное количество тепла. Статистика показывает, что значительно повысить энергоэффективность профильных конструкций можно в том случае, если получится задержать инфракрасные волны.

При этом нельзя оставлять без внимания ПВХ-системы, так как коэффициент сопротивления теплопередаче стеклопакетов в определенной мере зависит от их особенностей. Например, форма сечения профилей влияет на глубину посадки и максимальную толщину стеклопакетов. От упомянутых размеров зависит суммарная энергоэффективность окон. Кроме этого, хорошие профили замедляют процесс теплообмена по периметру световых проемов и распространение холода от остывших стен. Эти процессы взаимосвязаны и становятся причиной снижения температуры во внутренних помещениях.

Последний фактор, который оказывает влияние на уровень теплопроводность окон – герметичность. Однако этот параметр достаточно сложно рассчитать математически. Поэтому заказчику окон достаточно знать, что для обеспечения герметичности требуются качественная фурнитура и армирование профиля. Также нужно уделить внимание качеству установки. Если монтаж выполнен не по правилам, возможна разгерметизация конструкции по периметру рам. Подробнее о требованиях к установке читайте на ОкнаТрейд.

Как вычислить общую теплопроводность окна

Теплопроводность окна с учетом этих данных вычисляется по формуле:

R= R sp×R p/((1- β)×Rsp + β×R p)

У разных профилей и стеклопакетов коэффициенты отличаются. Не существует среднего значения. Ведь в таком случае все окна имели бы одинаковую способность удерживать тепло. Точные значения коэффициентов приведены в этой статье в разделах о ПВХ-системах и стеклопакетах. Чтобы вычислить площадь переплета, нужно умножить длину составных элементов створок и рам на ширину профилей, а затем суммировать полученные значения. Площадь остекления равна площади световых проемов.

Расчет толщины утеплителя

Узнать требуемую толщину утепления можно самостоятельно выполнив небольшой расчет. Необходимо воспользоваться табличными данными и сведениями из СНиП, которые приведены ниже.

Очень важно знать какая толщина утепления необходима. Если ее сделать недостаточной, то не будет максимального эффекта от утепления, в результате большой ущерб. При долгой эксплуатации недоутепленного здания будут потеряны весьма значительные денежные средства. Но и перерасход утеплителя снижает экономическую целесообразность.

Оптимальное сопротивление теплопередаче стены (ограждающей конструкции) прописано в СНиП. Нам нужно утеплить стену так, чтобы достичь нормативного теплового сопротивления или немного превысить его.

Расчет толщины утепления в одно действие

Можно посчитать толщину утепления приблизительно одним действием, но обычно и этого достаточно, чтобы не промахнуться с выбором утеплителя и его толщины. Так как утеплять будем все равно плитами стандартной толщины и подберем их по ближайшему наибольшему значению.

К примеру нам нужно утеплить железобетонную стену квартиры в регионе Москва. Сопротивление теплопередаче стены для региона Москва должно составлять примерно 3,15м? •°С/Вт, (принято 5200 градусо-суток отопительного периода) (можно воспользоваться таблицей данных для разных городов в конце страницы).

Читайте так же:
Топка кедди обложенная кирпичом

Сопротивлением теплопередаче собственно ж/б стены пренебрегаем как несущественным.

Тогда толщина утеплителя пенопласта ПСБ25 составит ?=R• ?•0,9, где

R — требуемое сопротивление теплопередаче;
? — коэффициент теплопроводности материала, Вт/(м•°С), табличная величина;
0,9 — здесь — «коэффициент грубости расчета» — учитывает стену и некоторые другие параметры.
? = 3,15х0,038х0,9=0,107 м, принимаем толщину утеплителя пенопласт — 10 см одним листом.

Определение толщины утеплителя с учетом конструкций

Еще один пример, как узнать сколько утеплителя нужно, также не совсем точный, но приемлемый для применения на практике расчет.
Утепляем стену из полнотелого силикатного кирпича толщиной 0,38 м в Астрахани.

Требуемое сопротивление теплопередаче этой стены — 2,64 м? •°С/Вт
Собственное сопротивление теплопередачи стены составит
Rст.= ? ? ? =0,38/0,7=0,54м? •°С/Вт

Тогда для достижения нормативного значения нам не будет хватать 2,5 — 0,54=1,96м? •°С/Вт. Т.е сопротивление теплопередаче слоя утеплителя пенопласт СПБ 25 должно быть 1,96м? •°С/Вт.
Необходимая толщина пенопласта ?= 1,96х0,038=0,074м.

Промышленность может нас порадовать пенопластом ПСБ25 ближайшей большей толщиной 8 см. Его и будем применять.

Проверка выбора утепления по паропроницаемости

При выборе утеплителя для стены нельзя ошибиться в одном — наружный слой (утеплитель) должен быть более паропрозрачный чем стена. Если условие не выполняется, то нужно заменить утеплитель с меньшим сопротивлением движению пара.

Проверяем, подходит ли выбранный пенопласт толщиной 8 см для кирпичной стены по условиям пароизоляции.

Паропроницаемость слоя определяется делением его толщины на коэффициент паропроницаемости (данные в конце страницы).

Для стены – 0,38/0,11=3,45 м2 • ч • Па/мг.
Для пенопласта – 0,08/0,05=1,6 м2 • ч • Па/мг.
Условие выполняется.

Примечание: Обычно строительные материалы с высокой паропрозрачностью, такие как поризованая керамика, дерево, можно утеплять только лишь ватными материалами с весьма большим коэффициентом паропрозрачности (больше 0,2 мг/(м*ч*Па).

Уточняющие расчеты при выборе утепления

Рассчитаем толщину утеплителя для северо-восточной стены баньки где-нибудь на южном Урале.

Требуемое согласно норматива сопротивление теплопередаче для всей стены — 3,5 м? •°С/Вт.

Сопротивление теплопередаче самой конструкции должно быть:
R=Rо-Rв-Rн=3,5-0,115-0,043=3,342 м? •°С/Вт;

где
Rо-нормативное значение сопротивления теплопередаче= 3,5 м? •°С/Вт;
Rв — сопротивление при переходе тепловой энергии от внутреннего воздуха к внутренней поверхности ограждения, Rв=0,115 м? •°С/Вт (сопротивление тепловосприятию);
Rн — сопротивление при переходе тепловой энергии от наружной поверхности ограждения к наружному воздуху, Rн=0,043 м? •°С/Вт (сопротивление теплоотдаче);

  • Несущая стена — деревянный брус, ель, толщиной 0,2 м.ъ
  • Внутренняя пароизоляция и утепление стены — вспененный фольгированный полиэтилен, обращенный фольгой вовнутрь, толщиной 0,005 м.
  • Вентиляционный зазор между внутренней обшивкой из шпунтованной доски и пароизоляцией толщиной 0,02м (замкнутая воздушная прослойка с конвекционным движением воздуха).
  • Внутренняя обшивка из шпунтованной доски, сосна, ель, толщиной 0,02 м.

Выбранный утеплитель, с учетом рекомендаций по паропроницаемости слоев, минеральная вата, плитная под сайдингом.
Ее коэффициент теплопроводности в условиях эксплуатации под диффузионной мембраной с наружным вентиляционым зазором с учетом увеличения теплопроводности на 20% — 0,045Вт/(м•°С).

Сопротивление теплопередаче имеющейся конструкции стены определяется как сумма сопротивления каждого слоя
Rк=R1+R2+R3+R5=1,176+0,161+0,117+0,28 = 1,734 м? •°С/Вт,

где
R1 — сопротивление теплопередаче несущей стены.
R1=0,2/0,17=1,176м? •°С/Вт,

Здесь толщина бревна ?=0,2м,
коэффициент теплопроводности сосны и ели поперек волокон ?=0,17 Вт/(м•°С).

Далее:
R2=0,005/0,031=0,161 м? •°С/Вт, сопротивление теплопередаче фольгированного вспененного полиэтилена;
R3=0,02/0,17=0,117 м? •°С/Вт, — сопротивление теплопередаче внутренней деревянной обшивки.
R4=0,14м? •°С/Вт х 2=0,28м? •°С/Вт — сопротивление вентиляционного зазора
между отделкой и пароизоляцией, принимается 0,14 для толщины зазора 0,02 м и с коэффициентом 2, так как имеется отражение лучевой энергии фольгой.

Сопротивление теплопередаче самого утеплителя должно быть
Rут=R-Rк=3,342 — 1,734= 1,608м? •°С/Вт,

Расчетная толщина утеплителя минеральная вата
? расч. =1,608х0,045 = 0,072 м.

С учетом того, что стена располагается с северовосточной стороны, уточняем толщину утеплителя — к полученному значению расчетной толщины добавляется поправочное значение ? расч.х0,1,

? утепл. = 0.072+ 0,072х0,1= 0,079 м.

Мы узнали толщину утепления для бани (согласно СП 23-101-2004″Проектирование тепловой защиты зданий»), расположенной в относительно прохладном районе. Сама же баня, на первый взгляд с достаточно теплыми стенами, но расчет показал, что необходимо дополнительное утепление, для чего применяется минеральная вата толщиной 8 см.

Данные СНиП о сопротивлении теплопередаче ограждающих конструкций

Требуемое сопротивление теплопередаче для стен жилых зданий в городах и областях России

Внимание, что бы узнать приблизительное значение:

  • для потолочных перекрытий и крыш, перекрытий над проездами и другими не огражденными участками (на сваях..), необходимо данные умножить на 1,5;
  • для перекрытий над подвалами, неотапливаемыми подпольями, полов по грунту – данные умножить на 1,3[/i]
Читайте так же:
Как удалить соли с кирпича

Значение паропроницаемости для различных строительных материалов

Qт (кВт/час)=(100 Вт/м2 x S (м2) x K1 x K2 x K3 x K4 x K5 x K6 x K7)/1000

Данная формула расчета теплопотерь по укрупненным показателям, в основе которых лежат усредненные условия 100 Вт на 1кв метр. Где основными рассчетными показателями для расчета системы отопления являются следующие величины:

— тепловая мощность предполагаемого отопителя на отработанном масле, кВт/час.

100 Вт/м2 — удельная величина тепловых потерь (65-80 ватт/м2). В нее входят утечки тепловой энергии путем ее поглощения оконами, стенами, потолком полом; утечки через вентиляцию и негерметичности помещения и другие утечки.

S — площадь помещения;

K1 — коэффициент теплопотерь окон:

  • обычное остекление К1=1,27
  • двойной стеклопакет К1=1,0
  • тройной стеклопакет К1=0,85;

К2 — коэффициент теплопотерь стен:

  • плохая теплоизоляция К2=1,27
  • стена в 2 кирпича или утеплитель 150 мм толщиной К2=1,0
  • хорошая теплоизоляция К2=0,854

К3 коэффициент соотношения площадей окон и пола:

  • 10% К3=0,8
  • 20% К3=0,9
  • 30% К3=1,0
  • 40% К3=1,1
  • 50% К3=1,2;

K4 — коэффициент наружной температуры:

  • -10oC K4=0,7
  • -15oC K4=0,9
  • -20oC K4=1,1
  • -25oC K4=1,3
  • -35oC K4=1,5;

K5 — число стен, выходящих наружу:

  • одна — К5=1,1
  • две К5=1,2
  • три К5=1,3
  • четыре К5=1,4;

К6 — тип помещения, которое находится над расчитываемым:

  • холодный чердак К6=1,0
  • теплый чердак К6=0,9
  • отапливаемое помещение К6-0,8;

K7 — высота помещения:

  • 2,5 м К7=1,0
  • 3,0 м К7=1,05
  • 3,5 м К7=1,1
  • 4,0 м К7=1,15
  • 4,5 м К7=1,2.

Упрощенный рассчет теплопотерь дома

Qт = ( V x ∆t x k )/860; ( кВт )

V — объем помещения ( куб.м )
∆t — дельта температур (уличной и в помещении)
k — коэффициент рассеивания

  • k= 3,0-4,0 – без теплоизоляции. (Упрощенная деревянная конструкция или конструкция из гофрированного металлического листа).
  • k= 2,0-2,9 – небольшая теплоизоляция. (Упрощенная конструкция здания, одинарная кирпичная кладка, упрощенная конструкция окон и крыши).
  • k= 1,0-1,9 – средняя теплоизоляция. (Стандартная конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей).
  • k= 0,6-0,9 – высокая теплоизоляция. (Улучшенная конструкция, кирпичные стены с двойной теплоизоляцией, небольшое количество окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала).

В данной формуле очень условно учитываются коэффициент рассеивания и не совсем понятно каким коэффициентами пользоваться. В классике редкое современное, выполненное из современных материалов с учетом действующих стандартов, помещение обладает ограждающими конструкциями с коэффициентом рассеивания более одного. Для более детального понимания методики расчёта предлагаем следующие более точные методики.

Рекомендуемый рассчет теплопотерь дома

Сразу же акцентирую ваше внимание на то, что ограждающие конструкции в основном не являются однородными по структуре, а обычно состоят из нескольких слоёв. Пример: стена из ракушника = штукатурка + ракушник + наружная отделка. В эту конструкцию могут входить и замкнутые воздушные прослойки (пример: полости внутри кирпичей или блоков). Вышеперечисленные материалы имеют отличающиеся друг от друга теплотехнические характеристики. Основной такой характеристикой для слоя конструкции является его сопротивление теплопередачи R.

q – это количество тепла, которое теряет квадратный метр ограждающей поверхности (измеряется обычно в Вт/м.кв.)

ΔT — разница между температурой внутри рассчитываемого помещения и наружной температурой воздуха (температура наиболее холодной пятидневки °C для климатического района в котором находится рассчитываемое здание).

В основном внутренняя температура в помещениях принимается:

  • Жилые помещения 22С
  • Нежилые 18С
  • Зоны водных процедур 33С

Когда речь идёт о многослойной конструкции, то сопротивления слоёв конструкции складываются. Отдельно хочу акцентировать ваше внимание на расчётном коэффициенте теплопроводности материала слоя λ Вт/(м°С). Так как производители материалов чаще всего указывают его. Имея расчётный коэффициент теплопроводности материала слоя конструкции мы легко можем получить сопротивление теплопередачи слоя:

δ — толщина слоя, м;

λ — расчётный коэффициент теплопроводности материала слоя конструкции, с учетом условий эксплуатации ограждающих конструкций, Вт / (м2 оС).

Итак для расчёта тепловых потерь через ограждающие конструкции нам нужны:

1. Сопротивление теплопередачи конструкций (если конструкция многослойная то Σ R слоёв) R
2. Разница между температурой в расчётном помещении и на улице (температура наиболее холодной пятидневки °C. ). ΔT
3. Площади ограждений F (Отдельно стены, окна, двери, потолок, пол)
4. Ориентация здания по отношению к сторонам света.

Формула для расчёта теплопотерь ограждением выглядит так:

Qогр=(ΔT / Rогр)* Fогр * n *(1+∑b)

Qогр — тепло потери через ограждающие конструкции, Вт
Rогр – сопротивление теплопередаче, м.кв.°C/Вт; (Если несколько слоёв то ∑ Rогр слоёв)
Fогр – площадь ограждающей конструкции, м;
n – коэффициент соприкосновения ограждающей конструкции с наружным воздухом.

Тип ограждающей конструкции

Коэффициент n

1. Наружные стены и покрытия (в том числе вентилируемые наружным воздухом), перекрытия чердачные (с кровлей из штучных материалов) и над проездами; перекрытия над холодными (без ограждающих стенок) подпольями в Северной строительно-климатической зоне

2. Перекрытия над холодными подвалами, сообщающимися с наружным воздухом; перекрытия чердачные (с кровлей из рулонных материалов); перекрытия над холодными (с ограждающими стенками) подпольями и холодными этажами в Северной строительно-климатической зоне

Читайте так же:
Кирпич керамический чем отличается от красного кирпича

3. Перекрытия над не отапливаемыми подвалами со световыми проемами в стенах

4. Перекрытия над не отапливаемыми подвалами без световых проемов в стенах, расположенные выше уровня земли

5. Перекрытия над не отапливаемыми техническими подпольями, расположенными ниже уровня земли

(1+∑b) – добавочные потери теплоты в долях от основных потерь. Добавочные потери теплоты b через ограждающие конструкции следует принимать в долях от основных потерь:

а) в помещениях любого назначения через наружные вертикальные и наклонные (вертикальная проекция) стены, двери и окна, обращенные на север, восток, северо-восток и северо-запад — в размере 0,1, на юго-восток и запад — в размере 0,05; в угловых помещениях дополнительно — по 0,05 на каждую стену, дверь и окно, если одно из ограждений обращено на север, восток, северо-восток и северо-запад и 0,1 — в других случаях;

б) в помещениях, разрабатываемых для типового проектирования, через стены, двери и окна, обращенные на любую из сторон света, в размере 0,08 при одной наружной стене и 0,13 для угловых помещений (кроме жилых), а во всех жилых помещениях — 0,13;

в) через не обогреваемые полы первого этажа над холодными подпольями зданий в местностях с расчетной температурой наружного воздуха минус 40 °С и ниже (параметры Б) — в размере 0,05,

г) через наружные двери, не оборудованные воздушными или воздушно-тепловыми завесами, при высоте зданий Н, м, от средней планировочной отметки земли до верха карниза, центра вытяжных отверстий фонаря или устья шахты в размере: 0,2 Н — для тройных дверей с двумя тамбурами между ними; 0,27 H — для двойных дверей с тамбурами между ними; 0,34 H — для двойных дверей без тамбура; 0,22 H — для одинарных дверей;

д) через наружные ворота, не оборудованные воздушными и воздушно-тепловыми завесами, — в размере 3 при отсутствии тамбура и в размере 1 — при наличии тамбура у ворот.

Для летних и запасных наружных дверей и ворот добавочные потери теплоты по подпунктам “г” и “д” не следует учитывать.

Отдельно возьмём такой элемент как пол на грунте или на лагах. Здесь есть особенности. Пол или стена, не содержащие в своем составе утепляющих слоев из материалов с коэффициентом теплопроводности λ меньше либо равно 1,2 Вт/(м °С), называются не утепленными. Сопротивление теплопередаче такого пола принято обозначать Rн.п, (м2 оС) / Вт. Для каждой зоны не утепленного пола предусмотрены нормативные значения сопротивления теплопередаче:

  • зона I — RI = 2,1 (м2 оС) / Вт;
  • зона II — RII = 4,3 (м2 оС) / Вт;
  • зона III — RIII = 8,6 (м2 оС) / Вт;
  • зона IV — RIV = 14,2 (м2 оС) / Вт;

Первые три зоны представляют собой полосы, расположенные параллельно периметру наружных стен. Остальную площадь относят к четвертой зоне. Ширина каждой зоны равна 2 м. Начало первой зоны находится в месте примыкания пола к наружной стене. Если неутеплёный пол примыкает к стене заглублённой в грунт то начало переносится к к верхней границе заглубления стены. Если в конструкции пола, расположенного на грунте, имеются утепляющие слои, его называют утепленным, а его сопротивление теплопередаче Rу.п, (м2 оС) / Вт, определяется по формуле:

Rу.п. = Rн.п. + Σ (γу.с. / λу.с)

Rн.п — сопротивление теплопередаче рассматриваемой зоны неутепленного пола, (м2 оС) / Вт;
γу.с — толщина утепляющего слоя, м;
λу.с — коэффициент теплопроводности материала утепляющего слоя, Вт/(м·°С).

Для пола на лагах сопротивление теплопередаче Rл, (м2 оС) / Вт, рассчитывается по формуле:

Теплопотери каждой ограждающей конструкции считаются отдельно. Величина теплопотерь через ограждающие конструкции всего помещения будет сумма теплопотерь через каждую ограждающую конструкцию помещения. Важно не напутать в измерениях. Если вместо (Вт) появится (кВт) или вообще (ккал) получите неверный результат. Ещё можно по невнимательности указать Кельвины (K) вместо градусов Цельсия (°C).

Продвинутый рассчет теплопотерь дома

Отопление в гражданских и жилых зданиях теплопотери помещений состоят из теплопотерь через различные ограждающие конструкции, такие как окна, стены, перекрытия, полы а также теплорасходов на нагревание воздуха, который инфильтрируется сквозь неплотности в защитных сооружениях (ограждающих конструкциях) даного помещения. В промышленных зданиях существуют и другие виды теплопотерь. Расчет теплопотерь помещения производится для всех ограждающих конструкций всех отапливаемых помещений. Могут не учитываться теплопотери через внутренние конструкции, при разности температуры в них с температурой соседних помещений до 3С. Теплопотери через ограждающие конструкции расчитываются по следующей формуле, Вт:

Qогр = F ( tвн – tнБ) (1 + Σ β ) n / Rо

tнБ – темп-ра наружного воздуха, оС;
tвн – темп-ра в помещении, оС;
F – площадь защитного сооружения, м2;
n – коэффициент, который учитывает положение ограждения или защитного сооружения (его наружной поверхности) относительно наружного воздуха;
β – теплопотери добавочные, доли от основных;
– сопротивление теплопередаче, м2·оС / Вт, которое определяется по следующей формуле:

Читайте так же:
Как отмыть кирпич от извести

Rо = 1/ αв + Σ ( δі / λі ) + 1/ αн + Rв.п., где

αв – коэффициент тепловосприятия ограждения (его внутренней поверхности), Вт/ м2· о С;
λі и δі – расчетный коэффициент теплопроводности для материала данного слоя конструкции и толщина этого слоя;
αн – коэффициент теплоотдачи ограждения (его наружной поверхности), Вт/ м2· о С;
Rв.n – в случае наличия в конструкции замкнутой воздушной прослойки, ее термосопротивление, м2· о С / Вт (см. табл.2).
Коэф-ты αн и αв принимаются согласно СНиП а для некоторых случаев приведены в таблице 1;
δі – обычно назначается согласно заданию или определяется по чертежах ограждающих конструкций;
λі – принимается по справочникам.

Таблица 1. Коэффициенты тепловосприятия αв и теплоотдачи αн

Поверхность ограждающей конструкции

αв , Вт/ м2· о С

αн , Вт/ м2· о С

Поверхность внутренняя полов, стен, гладких потолков

Вычисление общей теплопроводности окна

Для определения показателя сопротивления теплопередачи не нужно обладать особыми знаниями. Достаточно будет использования теплотехнической информации о профильных системах наряду со стеклопакетами. Делать акцент нужно сразу на нескольких коэффициентах. Беря во внимание теплопроводность створок с рамами и стеклопакетами, удастся получить точные данные. Во время вычислений обязательно учитываются показатели:

  • R sp – коэффициент стеклопакета.
  • R p – коэффициент переплета окна.
  • β – отношения площади светопрозрачной части изделия к общей оконной площади.

Эти показатели нужны для вычисления теплопроводности конструкции по формуле:

R= R sp×R p/((1- β)×Rsp + β×R p).

У каждого профиля и стеклопакета свои коэффициенты, поэтому определить среднее значение не представляется возможным. В ином случае все окна удерживали бы тепло совершенно одинаково. Для вычисления площади переплета показатель длины составных элементов створок с рамами умножается на ширину профилей, после чего значения суммируются. Площадь остекления приравнивается к площади световых проемов.

Как и обещал, поговорим о теплопроводности материалов при строительстве дома и какой же все таки выбрать материал для дома и технологию строительства, основываясь на ваши цели в плане его использования. Произведем расчет теплопроводности стен дома. Сравним материалы, посчитаем, какой дом экономичнее всего отапливать. Особенно, это важно для нас, т.к. нам необходимо отапливать дом около 6 месяцев в году, а в некоторых регионах России еще больше. Проще говоря, какой же дом действительно экономит нам наши деньги?
Речь пойдет о теплопроводности стены, почему стены? Да, потому что выбор основного материала для стен определяет тип, этапы, технологию строительства, а так же теплоэффективность дома в итоге.

Выбираем материал стен дома, основываясь на теплопроводность материалов

Из курса физики мы знаем, что любая система стремится к равновесию. Поэтому, если у нас есть перепады температур, тогда сразу же возникает перетекание тепла. Т.е. тепловая энергия перетекает из теплого в холодное. Таким образом, наш дом будет отдавать свое тепло наружу через все, что только возможно, стены, крышу, пол, окна, двери, как видно на фото из-за разницы температур. В итоге дом полностью остынет и приравняется к внешней температуре.

Поэтому чтобы восполнить эту теплопотерю необходимо постоянно в холодное время отапливать дом. То с какой скоростью перетекает тепло из горячей зоны в холодную и есть теплопроводность. Как мы понимаем, разные материалы имеют разную теплопроводность и можно померить это благодаря коэффициенту теплопроводности.

Посчитать это можно по данной формуле расчета коэффициента теплопроводности. То есть, сколько тепла за единицу времени протекает через 1 кв.м. материала при градиенте температур 1 градус на 1 метр (на рисунке это показано с одной стороны куба 20 градусов с другой 19 градусов)

Коэффициент теплопроводности кирпича, коэффициент теплопроводности дерева

Мы видим из подсчетов, что у дерева теплопроводность в 3 раза меньше. Это означает, что при прочих равных условиях (равная толщина материала и температур) протекаемость тепла в кирпиче в 3 раза быстрее, а в дереве в 3 раза медленнее относительно кирпича. Поэтому дерево более энергосберегающий материал. Если мы хотим чтобы у кирпича была такая теплопотеря, как у дерева, значит, толщину кирпича нужно увеличить втрое. Простая арифметика!
Теперь посмотрим, что будет в случае с каркасным домом. В каркасном доме 90% объема стены занимает утеплитель, в нашем случае возьмем самый экологичный материал – каменную вату на базальтовой основе. На фото мы видим, что коэффициент теплопроводности 0,038, а это в 5 раз меньше теплопроводность, чем у дерева, а с кирпичом разница аж в 15 раз.

Читайте так же:
Кирпича марки м100 м125

На одной из выставок, я увидел замечательный стенд, который наши расчеты и подтверждает.
На этом стенде сравниваются: сверху дерево (клееный брус), пеноблок и каркасник.
Все материалы равной толщины. С одной стороны материал нагревается пленочным теплым полом, с другой стороны стоит термометр, который показывает уровень исходящего тепла. Конечно, качество фото оставляет желать лучшего.
Итак… смотрим на стенд с разных сторон

Смотрим на нижние показатели на градуснике, к сожалению практически не видно цифр на градуснике, поэтому я назову их сверху вниз:
Дерево – 28° С
Пеноблок – почти 30° С
Каркасная стена – 25° С

Каркасная стена забирает победную золотую медаль, это не сложно объяснить, т.к. утеплитель имеет меньшую плотность и дает большую воздушность, а значит максимально удерживает тепло.

Расход энергии на отопление, расчет расходов на отопление

Меня так же интересовала, какой будет расход тепловой энергии и сколько нужно будет затрачивать в месяц на отопление дома, с помощью электричества, хотя Россия и богата газом, к сожалению, его еще далеко не везде провели.
Давайте вместе научимся считать, сколько придется платить за электричество своего дома.
Возьмем, к примеру, дом 7*7 с высотой стен в 5 метров.

Формула расчета тепла

Расчет расхода тепла кирпичной стены

Стена у нас будет 20 см. Снаружи температура -10°, а внутри +20°, в итоге, градиент получается 30 градусов. Здесь сделали определенные допущения, что тепло выходит только из стен, нам тут важно понять сам принцип. Из прошлых расчетов, мы помним, что лямбда кирпичной стены=0,56

Итак, 0,56*21000 = 11760 (Вт), если перевести это в киловатты, то в час у нас будет уходить 11,76 кВт*ч. Считаем сколько придется платить за электричество в месяц при кирпичной стене в 20 см. и минус 10° за окном.

11,76кВт * 24часа * 30 дней * 5 (руб.кВт*ч) = 42 336 руб.мес.
Ого, какая сумма! Но слава богу, что только из кирпича никто не строит, его еще нужно утеплить снаружи и изнутри.
К примеру, стены у сталинских домов толщиной в 1 метр. При таком раскладе, нужно будет платить в 5 раз меньше – 8467 руб.мес. И это тоже очень даже не мало.

Расчет расхода тепла деревянной стены

Посмотрим, что творится с деревянной стеной, клееным брусом. Берем те, же исходные данные, толщина стены 20см. и -10° за окном.

Если мы все перемножим, то получается 13680 рублей в месяц на электроэнергию.
Мы, конечно, тут допускаем много недочетов в расчетах, но все это близко к нашим реалиям. Но мы точно выяснили, что кирпич отапливать в 3 раза дороже.

Расчет расхода тепла каркасной стены

Сейчас посмотрим, что происходит с показателями по расходам на отопление в каркасных домах.

Стена состоит на 90% из утеплителя, каменной ваты. Здесь уже расход очень даже радует, в месяц нужно затратить всего 2873 рубля. Меньше 1-го киловатта отдаем мощности. Это уже близко к расходам по квартплате. Прошу вас никогда не использовать в своих жилых домах экструдированные пенополистирол — это ядовитый утеплитель, который активно рекламируют производители открыто обманывая нас. О ядовитых свойствах этого утеплителя, я подробнее написал в предыдущем посте — Дома из СИП панелей .

Конечно, если топить газом, это будет в разы дешевле. Но история последних лет, говорит о том, что скорость увеличения цен на газ намного быстрее, чем у электричества.
Но если у вас есть возможность провести газ, то конечно, лучше отапливать газом и не нести такие существенные расходы на отопление вашего загородного дома.

Теплоемкость кирпича, дерева и каркаса. За сколько времени прогреется кирпичный, деревянный и каркасный дом?

Теплоемкость – сколько нужно потратить тепловой энергии, чтобы нагреть 1 кг вещества на 1 градус.

При нагреве воды и воздуха, уходит различное количество энергии, так они имеет различную теплоемкость.

Возьмем 3-х киловаттный обогреватель и воздух в доме можно прогреть очень быстро, но почему тогда в результате дом все равно остается холодным?

Многие об этом даже не задумываются, хотя исходя из этого параметра теплоемкости и целей использования дома, вам и нужно выбирать материал стен вашего загородного дома.

Об этом показателе поговорим в моем следующем посте. Я расскажу подробно о теплоемкости материалов стен со всеми вытекающими вычислениями, точно как я рассказал вам сегодня.

Сделать расчеты количества материалов стен можно на калькуляторе наружных стен из пеноблока, кирпича, каркаса или бруса. Заходите и читайте! Поставьте лайк, займет всего секунду вашего времени, а мне будет приятно!

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector